
9.5 Alternating Series 619

9.5 Alternating Series

Use the Alternating Series Test to determine whether an infinite series converges.
Use the Alternating Series Remainder to approximate the sum of an alternating
series.
Classify a convergent series as absolutely or conditionally convergent.
Rearrange an infinite series to obtain a different sum.

Alternating Series
So far, most series you have dealt with have had positive terms. In this section and the
next section, you will study series that contain both positive and negative terms. The
simplest such series is an alternating series, whose terms alternate in sign. For example,
the geometric series

is an alternating geometric series with Alternating series occur in two ways:
either the odd terms are negative or the even terms are negative.

Proof Consider the alternating series For this series, the partial sum
(where is even)

has all nonnegative terms, and therefore is a nondecreasing sequence. But you can
also write

which implies that for every integer So, is a bounded, nondecreasing
sequence that converges to some value Because and 
you have

Because both and converge to the same limit it follows that also
converges to Consequently, the given alternating series converges.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.
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THEOREM 9.14 Alternating Series Test

Let The alternating series

and

converge when the two conditions listed below are met.

1.

2. for all nan�1 � an,

lim
n→�

  an � 0

�
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�
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an > 0.

REMARK The second
condition in the Alternating
Series Test can be modified to
require only that 
for all greater than some 
integer N.

n
0 < an�1 � an
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Using the Alternating Series Test

Determine the convergence or divergence of

Solution Note that So, the first condition of Theorem 9.14 is

satisfied. Also note that the second condition of Theorem 9.14 is satisfied because

for all So, applying the Alternating Series Test, you can conclude that the series 
converges.

Using the Alternating Series Test

Determine the convergence or divergence of

Solution To apply the Alternating Series Test, note that, for 

So, for all Furthermore, by L’Hôpital’s Rule,

Therefore, by the Alternating Series Test, the series converges.

When the Alternating Series Test Does Not Apply

a. The alternating series

passes the second condition of the Alternating Series Test because for all
You cannot apply the Alternating Series Test, however, because the series does not

pass the first condition. In fact, the series diverges.

b. The alternating series

passes the first condition because approaches 0 as You cannot apply the
Alternating Series Test, however, because the series does not pass the second 
condition. To conclude that the series diverges, you can argue that equals the 
partial sum of the divergent harmonic series. This implies that the sequence of 
partial sums diverges. So, the series diverges.
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REMARK The series in
Example 1 is called the 
alternating harmonic series.
More is said about this series 
in Example 8.

REMARK In Example 3(a),
remember that whenever a
series does not pass the first
condition of the Alternating
Series Test, you can use the 
th-Term Test for Divergence 

to conclude that the series
diverges.

n
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Alternating Series Remainder
For a convergent alternating series, the partial sum can be a useful approximation for
the sum of the series. The error involved in using is the remainder

Approximating the Sum of an Alternating Series

See LarsonCalculus.com for an interactive version of this type of example.

Approximate the sum of the series by its first six terms.

Solution The series converges by the Alternating Series Test because

and

The sum of the first six terms is

and, by the Alternating Series Remainder, you have

So, the sum lies between and and you have

Finding the Number of Terms

Determine the number of terms required to approximate the sum of the series with an
error of less than 0.001.

Solution By Theorem 9.15, you know that 

For an error of less than 0.001, must satisfy the inequality 

So, you will need at least 5 terms. Using 5 terms, the sum is which
has an error of less than 0.001.
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THEOREM 9.15 Alternating Series Remainder

If a convergent alternating series satisfies the condition then the
absolute value of the remainder involved in approximating the sum by 
is less than (or equal to) the first neglected term. That is,

A proof of this theorem is given in Appendix A.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

�S � SN� � �RN� � aN�1.

SNSRN

an�1 � an,

TECHNOLOGY Later, using
the techniques in Section 9.10,
you will be able to show that the
series in Example 4 converges to 

(See Section 9.10, Exercise 58.)
For now, try using a graphing
utility to obtain an approximation
of the sum of the series. How
many terms do you need to
obtain an approximation that 
is within 0.00001 unit of the
actual sum?

e � 1
e


 0.63212.
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Absolute and Conditional Convergence
Occasionally, a series may have both positive and negative terms and not be an
alternating series. For instance, the series

has both positive and negative terms, yet it is not an alternating series. One way to
obtain some information about the convergence of this series is to investigate the
convergence of the series

By direct comparison, you have for all so

Therefore, by the Direct Comparison Test, the series converges. The next 

theorem tells you that the original series also converges.

Proof Because for all the series

converges by comparison with the convergent series

Furthermore, because you can write

where both series on the right converge. So, it follows that converges.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

The converse of Theorem 9.16 is not true. For instance, the alternating harmonic
series

converges by the Alternating Series Test. Yet the harmonic series diverges. This type of
convergence is called conditional.
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THEOREM 9.16 Absolute Convergence

If the series converges, then the series also converges.� an� �an�

Definitions of Absolute and Conditional Convergence

1. The series is absolutely convergent when converges.

2. The series is conditionally convergent when converges but 
diverges.

� �an�� an� an

� �an�� an
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Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any 
convergent series as absolutely or conditionally convergent.

a.

b.

Solution

a. This is an alternating series, but the Alternating Series Test does not apply because
the limit of the th term is not zero. By the Term Test for Divergence, however,
you can conclude that this series diverges.

b. This series can be shown to be convergent by the Alternating Series Test. Moreover,
because the series

diverges, the given series is conditionally convergent.

Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any convergent
series as absolutely or conditionally convergent.

a.

b.

Solution

a. This is not an alternating series (the signs change in pairs). However, note that

is a convergent geometric series, with

Consequently, by Theorem 9.16, you can conclude that the given series is absolutely
convergent (and therefore convergent).

b. In this case, the Alternating Series Test indicates that the series converges. However,
the series

diverges by direct comparison with the terms of the harmonic series. Therefore, the
given series is conditionally convergent.
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FOR FURTHER INFORMATION To read more about the convergence of alternating
harmonic series, see the article “Almost Alternating Harmonic Series” by Curtis Feist
and Ramin Naimi in The College Mathematics Journal. To view this article, go to
MathArticles.com.
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Rearrangement of Series
A finite sum such as

can be rearranged without changing the value of the sum. This is not necessarily true of
an infinite series––it depends on whether the series is absolutely convergent or 
conditionally convergent.

1. If a series is absolutely convergent, then its terms can be rearranged in any order
without changing the sum of the series.

2. If a series is conditionally convergent, then its terms can be rearranged to give a 
different sum.

The second case is illustrated in Example 8.

Rearrangement of a Series

The alternating harmonic series converges to That is,

(See Exercise 55, Section 9.10.) 

Rearrange the series to produce a different sum.

Solution Consider the rearrangement below.

By rearranging the terms, you obtain a sum that is half the original sum.
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FOR FURTHER INFORMATION
Georg Friedrich Bernhard Riemann
(1826–1866) proved that if 
is conditionally convergent and 
is any real number, then the terms
of the series can be rearranged to 
converge to For more on this
topic, see the article “Riemann’s
Rearrangement Theorem” by
Stewart Galanor in Mathematics
Teacher. To view this article, go to
MathArticles.com.

S.

S
� an

Exploration

In Example 8, you learned that the alternating harmonic series

converges to Rearrangement of the terms of the series produces a
different sum,

In this exploration, you will rearrange the terms of the alternating harmonic
series in  such a way that two positive terms follow each negative term. That is,

Now calculate the partial sums and Then estimate the
sum of this series to three decimal places.
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9.5 Alternating Series 625

9.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Numerical and Graphical Analysis In Exercises 1–4,
explore the Alternating Series Remainder.

(a) Use a graphing utility to find the indicated partial sum 
and complete the table. 

(b) Use a graphing utility to graph the first 10 terms of the
sequence of partial sums and a horizontal line representing
the sum. 

(c) What pattern exists between the plot of the successive points
in part (b) relative to the horizontal line representing the
sum of the series? Do the distances between the successive
points and the horizontal line increase or decrease? 

(d) Discuss the relationship between the answers in part (c) and
the Alternating Series Remainder as given in Theorem 9.15.

1.

2.

3.

4.

Determining Convergence or Divergence In Exercises
5–26, determine the convergence or divergence of the series.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21.

22.

23.

24.

25.

26.

Approximating the Sum of an Alternating Series In
Exercises 27–30, approximate the sum of the series by using the
first six terms. (See Example 4.)

27. 28.

29. 30.

Finding the Number of Terms In Exercises 31–36, use
Theorem 9.15 to determine the number of terms required to
approximate the sum of the series with an error of less than
0.001.

31. 32.

33. 34.

35. 36.

Determining Absolute and Conditional Convergence

In Exercises 37–54, determine whether the series converges 
absolutely or conditionally, or diverges.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.
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626 Chapter 9 Infinite Series

True or False? In Exercises 61 and 62, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

61. For the alternating series

the partial sum is an overestimate of the sum of the series.

62. If and both converge, then converges.

Finding Values In Exercises 63 and 64, find the values of 
for which the series converges.

63. 64.

65. Proof Prove that if converges, then converges.
Is the converse true? If not, give an example that shows it is
false.

66. Finding a Series Use the result of Exercise 63 to give an
example of an alternating series that converges, but whose
corresponding series diverges.

67. Finding a Series Give an example of a series that 
demonstrates the statement you proved in Exercise 65.

68. Finding Values Find all values of for which the series
(a) converges absolutely and (b) converges conditionally.

Using a Series In Exercises 69 and 70, use the given series.

(a) Does the series meet the conditions of Theorem 9.14?
Explain why or why not.

(b) Does the series converge? If so, what is the sum?

69.

70.

Review In Exercises 71–80, test for convergence or 
divergence and identify the test used.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. Describing an Error The following argument, that
is incorrect. Describe the error.
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0 � 1,

�
�

n�2
 
ln n

n�
�

n�1
 
��1�n�1 4
3n2 � 1

�
�

n�0
 
��1�n

n � 4�
�

n�1
 100e�n	2

�
�

n�1
 

3n2

2n2 � 1�
�

n�0
 5�7

8�
n

�
�

n�1
 

1
2n � 1�

�

n�1
 
3n

n2

�
�

n�1
 

3
n2 � 5�

�

n�1
 

10
n3	2

an � �
1
�n

,

1
n3,

     if n is odd

     if n is even
�
�

n�1
 ��1�n�1 an,

� .  .  .�
1
3n� .  .  . �

1
2n

1
2

�
1
3

�
1
4

�
1
9

�
1
8

�
1

27

� �xn	n�
x

p-
p-

� a2
n� �an�

�
�

n�1
 ��1�n� 1

n � p��
�

n�1
 ��1�n� 1

np�

p

� anbn� bn� an

S100

�
�

n�1
 
��1�n

n

WRITING ABOUT CONCEPTS
55. Alternating Series Define an alternating series.

56. Alternating Series Test State the Alternating Series
Test.

57. Alternating Series Remainder Give the remainder
after terms of a convergent alternating series.

58. Absolute and Conditional Convergence In your
own words, state the difference between absolute and 
conditional convergence of an alternating series.

59. Think About It Do you agree with the following 
statements? Why or why not?

(a) If both and converge, then 
converges.

(b) If diverges, then diverges.� �an�� an

 � �an�� ��an�� an

N

60. HOW DO YOU SEE IT? The graphs of the
sequences of partial sums of two series are shown
in the figures. Which graph represents the partial
sums of an alternating series? Explain.

(a) (b)
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PUTNAM EXAM CHALLENGE
82. Assume as known the (true) fact that the alternating 

harmonic series

(1)

is convergent, and denote its sum by Rearrange the series
(1) as follows:

(2)

Assume as known the (true) fact that the series (2) is also
convergent, and denote its sum by Denote by the 
th partial sum of the series (1) and (2), respectively. Prove

the following statements.

(i) (ii)

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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